A dynamic modeling approach for anomaly detection using stochastic differential equations

نویسندگان

  • Yalda Rajabzadeh
  • Amir Hossein Rezaie
  • Hamidreza Amindavar
چکیده

a r t i c l e i n f o a b s t r a c t In this paper the stochastic differential equation (SDE) is utilized as a quantitative description of a natural phenomenon to distinguish normal and anomalous samples. In this framework, discrete samples are modeled as a continuous time-dependent diffusion process with time varying drift and diffusion coefficients. We employ a local non-parametric technique using kernel regression and polynomial fitting to learn coefficients of stochastic models. Next, a numerical discrete construction of likelihood over a sliding window is established using Girsanov's theorem to calculate an anomalous score for test observations. One of the benefits of the method is to estimate the ratio of probability density functions (PDFs) through the Girsanov's theorem instead of evaluating PDFs themselves. Another feature of employing SDE model is its generality, in the sense that it includes most of the well-known stochastic models. Performance of the new approach in comparison to other methods is demonstrated through simulated and real data. For real-world cases, we test our method on detecting anomalies in twitter user engagement data and discriminating speech samples from non-speech ones. In both simulated and real data, proposed algorithm outperforms other methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of the Kalman-Bucy filter in the stochastic differential equation for the modeling of RL circuit

In this paper, we present an application of the stochastic calculusto the problem of modeling electrical networks. The filtering problem have animportant role in the theory of stochastic differential equations(SDEs). In thisarticle, we present an application of the continuous Kalman-Bucy filter for a RLcircuit. The deterministic model of the circuit is replaced by a stochastic model byadding a ...

متن کامل

Application of new basis functions for solving nonlinear stochastic differential equations

This paper presents an approach for solving a nonlinear stochastic differential equations (NSDEs) using a new basis functions (NBFs). These functions and their operational matrices are used for representing matrix form of the NBFs. With using this method in combination with the collocation method, the NSDEs are reduced a stochastic nonlinear system of equations and unknowns. Then, the error ana...

متن کامل

Simulating Exchange Rate Volatility in Iran Using Stochastic Differential ‎Equations‎

‎The main purpose of this paper is to analyze the exchange rate volatility in Iran in the time period between 2011/11/27 and 2017/02/25 on a daily basis. As a tradable asset and as an important and effective economic  variable, exchange rate plays a decisive role in the economy of a country. In a successful economic management, the modeling and prediction of the exchange rate volatility is esse...

متن کامل

Mathematical modeling of a fixed bed chromatographic reactor for Fischer Tropsch synthesis

In this research, Fischer Tropsch synthesis (FTS) has been modeled in the fixed bed chromatographic reactor for the first time by applying a rather complex dispersed plug flow model for fluid phase and linear driving force (LDF) model for adsorbent. Model equations are dynamic, multi-component, non-linear and heterogeneous including reaction and adsorption simultaneously Complex kinetics fo...

متن کامل

Modeling and prediction of time-series of monthly copper prices

One of the main tasks to analyze and design a mining system is predicting the behavior exhibited by prices in the future. In this paper, the applications of different prediction methods are evaluated in econometrics and financial management fields, such as ARIMA, TGARCH, and stochastic differential equations, for the time-series of monthly copper prices. Moreover, the performance of these metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Digital Signal Processing

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016